Preface

Before the first automatic sprinkler system was developed in the 1870s, a sprinkler system consisted of a perforated pipe, a valve, a person to open the valve, and an elevated barrel or tank filled with water. A more dependable system was created in response to increased fire loads and increased values of buildings and their contents. A more advanced sprinkler system became possible as technology became more sophisticated.

Sprinkler systems automatically detect and then control, suppress, or extinguish fires. Water supplies can come from city water mains, dedicated storage tanks or ponds. Valves and alarm devices control and monitor the water’s flow. Distribution pipes send water to the sprinkler heads using a municipal water source to maintain and increase water pressure according to design criteria. Modern systems can detect a fire condition and discharge water quickly, before a fire grows to a fatal or catastrophic size, reducing fire deaths by nearly 100 percent. Understanding your fire sprinkler system can be life saving.

This guide provides information for the proper application, installation and maintenance of System Sensor sprinkler and notification products. Installation must comply with all code requirements such as NFPA and comply with directives from Authorities Having Jurisdiction (AHJ). AHJ directives always take precedence over other codes and have final authority.

System Sensor was founded in 1984, and has become the largest manufacturer of fire detection and notification appliances in the world. More than 1,900 System Sensor associates collaborate to build quality products for conventional detection; intelligent detection; audible and visible (AV) notification; heating, ventilation, air conditioning (HVAC) monitoring; and sprinkler systems monitoring. High production standards and strong customer engagement contribute to the solid demand for System Sensor products.

Every day we aim to develop advanced ideas that deliver advanced solutions.
Section 1
Fire Sprinkler Systems

There are four types of fire sprinkler systems: wet pipe, dry pipe, deluge, and pre-action. These choices allow sprinkler systems to provide an array of monitoring of hazard and environmental protection, customized to each individual situation.

Wet Pipe Sprinkler Systems

Wet pipe sprinkler systems are the most common systems. They have the fewest number of components and require less installation time than other systems. A wet pipe sprinkler system has a series of piping systems connected to regularly distributed sprinkler heads, fed by a main riser. Maintenance is minimal, so financial savings are also realized.

Wet pipe sprinkler systems cannot be installed in an area where distribution pipes are exposed to freezing temperatures, such as parking garages, because they always contain water.

The operation of a wet pipe sprinkler system depends on the heat reactive sprinkler heads. When a fire starts, its heat causes a fusible glass bulb or metallic heat sensor within the sprinkler head to shatter or melt and separate. Either action causes water to discharge from the distribution piping, striking the deflector on the open sprinkler head and spraying water onto the fire in an engineered pattern or throw.

Wet pipe systems are fixed temperature installations, meaning each sprinkler head is activated only if exposed to a predetermined temperature as low as 155°F or as high as 286°F.

There are three types of wet pipe sprinkler systems: wet pipe sprinkler system with an alarm check valve, wet pipe sprinkler system with maintained excess pressure, or wet pipe sprinkler system with a straight pipe riser.

Wet Pipe Sprinkler System with an Alarm Check Valve

When water enters the fire sprinkler system piping, it becomes non-potable and unsuitable for drinking. To keep the non-potable water from leaking back into the city water supply, an alarm check valve can be installed. The alarm check valve is a small device consisting of a spring, valve clapper and alarm port.

The spring holds the valve clapper closed, so that water will flow only in one direction. Water will not flow out of the sprinkler head until a predetermined temperature causes the individual sprinkler head to activate. When a sprinkler head is activated, the clapper opens allowing water to flow through the valve to feed the system. As the alarm port becomes exposed to water pressure, it causes a water motor gong, mechanical bell, or A/V device to sound. A water flow switch or detector connected to an electric bell, horn, or horn/strobe has become the most common water flow alarm notification device, replacing the mechanical water motor gong. The alarm port also becomes exposed to the incoming water supply where an alarm pressure switch can be installed to send an alarm signal to a panel.

To prevent a city water surge from activating alarms, a retard chamber can be installed. The retard chamber is a metal reservoir that holds the water during a brief city water surge. A drip valve at the bottom of the reservoir allows the water from the surge to slowly drain out. If sustained water flow occurs, as when a sprinkler is activated due to a fire condition, the reservoir cannot drain the water fast enough and the water motor gong or alarm pressure switch is activated.

Wet Pipe Sprinkler System with Maintained Excess Pressure

Wet pipe sprinkler systems with maintained excess pressure are offered with an alarm check valve. In this type of system, excess pressure is pumped in just above the alarm check valve to hold the clapper down even during a city water surge. This type of system eliminates false alarms caused by surges in the municipal water supply.

There are two ways to measure pressure loss in this type of system:

• A pressure switch is connected to the system above the check valve. When a sprinkler head is activated, the switch detects a drop in pressure and sends an alarm. Usually a supervisory pressure switch is used to monitor leaks in the system.

• A pressure switch is connected to the alarm port of the alarm check valve. When the sprinkler head is activated, the alarm check valve opens. When the valve opens, the alarm port is exposed to the incoming water supply. The pressure switch detects the pressure change and sends an alarm.

Wet Pipe Sprinkler System with a Straight Pipe Riser

Wet pipe sprinkler systems with straight pipe risers, located downstream of a check valve or backflow preventer, are the most common wet pipe sprinkler systems. The straight pipe riser, or vertical supply pipe within the sprinkler system, does not have a retard chamber or alarm port like other types of wet pipe sprinkler systems. Instead, this system has a riser check valve.

A riser check valve utilizes a vane type water flow switch to monitor water flow in the sprinkler system. When a continuous flow of water — more than 10 gallons per minute — occurs, a standard check valve or a water flow switch monitors the system and activates an alarm after a predetermined amount of time. The amount of time delay is selected on the flow switch to prevent short duration city water surges from causing false alarms. The time delay mechanism allows a predetermined alarm delay time to be set. If water surges beyond the predetermined time, an alarm will sound.

Dry Pipe Sprinkler Systems

Dry pipe sprinkler systems are installed in areas where distribution pipes are subject to freezing temperatures, such as unheated buildings and parking garages. Unlike wet pipe sprinkler systems that contain water, dry pipe sprinkler systems contain compressed air. The compressed air is supplied by an electric air compressor, nitrogen bottles, or other source.

Dry pipe sprinkler systems also have a valve clapper and alarm port. The dry pipe valve clapper is held closed by a pressure differential between air pressure and water pressure at the valve interface. Supervisory pressure switches are used to maintain the pressure on the system side, and can send a low or high pressure signal to a panel. The panel then either turns on a pump or releases pressure from the system through a ball valve to ensure that the right pressure is maintained in the system. When a fire starts, its heat...
causes a sprinkler head to open, and the compressed air is released. When the air pressure drops to a trip point (usually 10 psi below normal), a dry pipe valve opens and a rush of water from the main line floods the distribution pipes. With the rush of water from the main line through the open clapper valve the alarm port is exposed to water. Once exposed, a pressure switch senses the increase in pressure and sounds an alarm.

Dry Pipe Valve
The dry pipe valve is located above the main system control valve and must be installed in a heated area or enclosure to keep the water below the valve from freezing. The purpose of the dry pipe valve is to keep water from entering the pipes and potentially freezing.

The dry pipe valve has a one-way clapper that is partially covered with water called the priming water, to seal the valve seat, and has an intermediate chamber that connects the valve to the alarm line.

Pressure Switches
There are two types of pressure switches connected to the alarm line, an alarm pressure switch and a supervisory air pressure switch. Both switches monitor the air pressure on the system side of the dry pipe valve.
- Alarm pressure switches measure pressure changes within a system and send alerts to the panel and to an annunciator.
- Supervisory air pressure switches monitor air pressure on the system side of the dry pipe valve. They perform the following two functions:
 - The first supervisory switch monitors low air pressure and prevents the accidental operation of the dry pipe valve due to low air pressure from an air compressor failure or other leaks in the system.
 - The second supervisory switch monitors high air pressure to prevent damage to the clapper and rubber gaskets in the dry pipe valve. High pressure can damage the pipe. If air pressure is too high, the valve won’t operate until it bleeds off some of the system air.

Note:
- The pressure switch does not require a delay mechanism because water surges are not present with this type of system.
- Vane type switches should not be installed on a dry pipe system because the sudden rush of water could tear the paddle from the switch.

There are a few specialized applications where wet pipe and dry pipe systems are not suitable. In these instances, deluge or pre-action sprinkler systems are used. These instances are called “special hazards applications.”

Deluge Sprinkler Systems
Deluge sprinkler systems are installed in high hazard operations, such as power generating stations, aircraft hangers, petrochemical and munitions plants, and areas that store items such as flammable liquids. These systems work with independent fire detection systems to deliver water immediately to the protected area.

Deluge sprinkler systems work similarly to the wet pipe sprinkler system, except the system incorporates open sprinkler heads or nozzles that do not operate individually. The water is held back by an electric solenoid valve that is connected to a compatible releasing panel. An initiating device, such as a smoke detector, sends a signal to the monitoring panel which energizes the release circuit which opens the solenoid valve.

Water is not adequate to control fires in areas where flammable liquids are manufactured or stored. Sometimes a foam concentrate is mixed with the water in a part of the system referred to as a proportioner. This foam is called Aqueous Fire Fighting Foam or AFFF. The foam and water combination causes the concentrate to expand when released through the sprinkler head, depriving the fire source of oxygen required to support combustion of flammable materials.

Pre-action Sprinkler Systems
Pre-action sprinkler systems are installed in water sensitive environments such as computer rooms and refrigerated warehouses. These areas require systems that will operate only in an actual fire condition to save the building and its components from severe fire damage.

The pre-action system is similar to a dry pipe system, except that air pressure may or may not be used. It is also similar to the deluge system, except that the valve is electronically held closed and standard “closed” sprinkler heads are used. This design eliminates operational delays and water damage. The valve will only open if an independent detection system installed in the same area as the sprinkler system is activated, verifying a fire condition. In effect, opening a pre-action valve turns a pre-action system into a standard wet pipe sprinkler system.

Section 2
Standards
The National Fire Protection Association (NFPA) publishes standards for the proper application, installation and maintenance of fire protection products. The principal standards for sprinkler monitoring products are as follows:

NFPA 13: Standard for Installation of Sprinkler Systems
NFPA 13 guarantees a reasonable degree of protection for life and property from fire by standardizing design, installation and testing requirements for sprinkler systems. These standards are based on engineering principles, test data and field experience.

- A wet pipe system must be fitted with an alarm check valve or other listed water flow detecting alarm device with necessary attachments to provide an alarm.
- A dry pipe system must be fitted with listed alarm attachments to the dry pipe valve.
- In pre-action and deluge systems, the alarm apparatus shall consist of alarms actuated independently by the detection system and the flow of water.
- Paddle-type water flow alarm indicators shall be installed in wet systems only.
NFPA 13D: Installation of Sprinkler Systems in One- and Two-Family Dwellings and Manufactured Homes
NFPA 13D guarantees a sprinkler system that aids in the detection and control of residential fires, specifically in this type of dwelling, and thus provides improved protection against injury, life loss, and property damage.
- If the sprinkler system piping has a separate control valve installed, it must be supervised.
- Local water flow alarms shall be provided on all sprinkler systems in homes not equipped with smoke detectors in accordance with NFPA 72, National Fire Alarm Code.

NFPA 13R: Installation of Sprinkler Systems in Residential Occupancies up to and Including Four Stories in Height
NFPA 13R provides design and installation requirements for a sprinkler system to aid in the detection and control of fires in residential occupancies and thus provide improved protection against injury, life loss, and property damage.
- A local water flow alarm shall be provided on all sprinkler systems.
- Where a building fire alarm system is provided, the local water flow alarms shall be connected to the building fire alarm system.

NFPA 25: Standard for the Inspection, Testing and Maintenance of Water-Based Fire Protection
NFPA 25 guarantees a reasonable degree of protection for life and property from fire by inspecting, testing and maintaining water-based fire protection systems to ensure operating conditions are within the standards.
- Alarm devices shall be inspected quarterly to verify that they are free of physical damage.
- Water flow devices including, but not limited to, mechanical water motor gongs and pressure switches shall be tested quarterly.
- Vane type water flow devices shall be tested semi-annually.
- Where provided, water flow alarm and supervisory devices shall be tested on a quarterly basis.
- Valve supervisory switches shall be tested semiannually.
- A distinctive signal shall indicate movement from the valve’s normal position during either the first two revolutions of the hand wheel or when the stem of the valve has moved one-fifth of the distance from its normal position.
- The signal shall not be restored at any valve position except the normal position.

NFPA 72: National Fire Alarm Code
NFPA 72 guarantees a reasonable degree of protection for life and property from fire by defining requirements for signal initiation, transmission, notification and annunciation, as well as the levels of performance and the reliability of various fire alarm systems.
- Initiation of the alarm signal shall occur within 90 seconds of water flow at the alarm-initiating device when flow occurs that is equal to or greater than that from a single sprinkler of the smallest orifice size installed in the system.
- Movement of water due to waste, surges or variable pressure shall not initiate an alarm signal.
- Two separate and distinct signals shall be initiated: one indicating movement of the valve from its normal position (off-normal), and the other indicating restoration of the valve to its normal position.
- The off-normal signal shall be initiated during the first two revolutions of the hand wheel or during one-fifth of the travel distance of the valve control apparatus from its normal position.
- The off-normal signal shall not be restored at any valve position except normal.
- Two separate and distinct signals shall be initiated: one indicating that the required pressure has increased or decreased (off-normal), and the other indicating restoration of the pressure to its normal value.
- A pressure supervisory signal-initiating device for a dry pipe sprinkler system shall indicate both high and low pressure conditions. The off-normal signal shall be initiated when the pressure increases or decreases by 70 kPa (10 psi).
- A dry pipe or pre-action sprinkler system supplied with water by a connection beyond the alarm-initiating device of a wet pipe system shall be equipped with a separate water flow alarm-initiating pressure switch or other approved means to initiate a water flow alarm.
- The number of water flow switches permitted to be connected to a single initiating device circuit shall not exceed five.
- NFPA 72 states that if anything could cause the system to malfunction, a switch must be added to the system.
- This section leaves it up to the designer to indicate any supervisory device, which will help ensure that the building’s suppression systems will work properly.
- The number of supervisory devices permitted to be connected to a single initiating device circuit shall not exceed 20.
- Alarm signals initiated by manual fire alarm boxes, automatic fire detectors, water flow from the automatic sprinkler system, or actuation of other fire suppression system(s) or equipment shall be treated as fire alarms.

NFPA 101 guarantees a reasonable degree of protection for life and property from fire by providing requirements for designing, operating and maintaining buildings. Requirements are based on building type and occupancy.
- Where a sprinkler system provides automatic detection and alarm system initiation, it shall be provided with an approved alarm initiation device that operates when the flow of water is equal to or greater than that from a single automatic sprinkler.
- A supervisory signal shall be provided to indicate a condition that would impair the satisfactory operation of the sprinkler system.
- Monitoring shall include but not be limited to monitoring of control valves, fire pump power supplies and running conditions, water tank levels and temperatures, tank pressure, and air pressure on dry pipe valves.
- Where supervision of automatic sprinkler systems is provided in accordance with another provision of this Code, water flow alarms shall be transmitted to an approved, proprietary alarm receiving facility, or the fire department.

NFPA 5000: Building Construction and Safety Code
NFPA 5000 guarantees a reasonable degree of protection for life and property from fire through three independent regional organizations that write uniform building codes for the country. These codes, based on building type and occupancy, become law when adopted by local and state governments.
Where a sprinkler system provides automatic detection and alarm system initiation, it shall be provided with an approved alarm initiation device that operates when the flow of water is equal to or greater than that from a single automatic sprinkler.

In high-rise buildings, a sprinkler control valve and a water flow device shall be provided for each floor.

Supervisory signals shall sound and be displayed either at a location within the protected building that is constantly attended by qualified personnel or at an approved, remotely located receiving facility.

Where electrical supervision of automatic sprinkler systems is required by another section of this Code, water flow alarms shall be transmitted to an approved proprietary alarm receiving facility, a remote station, or a central station of the fire department.

The International Building Code and International Fire Code were created by the International Code Council Inc. (ICC) in an effort to harmonize the country under one set of standards. The purpose of the *International Building Code* and *International Fire Code* is to protect safety to life and property from fire and other hazards attributed to the built environment, and to provide safety to fire fighters and emergency responders during emergency operations.

All valves controlling the water supply for automatic sprinkler systems, pumps, tanks, water levels, and temperatures, critical air pressures, and water flow switches on all sprinkler systems shall be electrically supervised.

In occupancies required to be equipped with a fire alarm system, the backflow preventer valves shall be electrically supervised by a tamper switch installed in accordance with NFPA 72 and separately annunciated.

Approved audible devices shall be connected to every automatic sprinkler system. Such sprinkler water flow alarm devices shall be activated by water flow equivalent to the flow of a single sprinkler of the smallest orifice size installed in the system. Alarm devices shall be provided on the exterior of the building in an approved location.

Where a fire alarm system is installed, actuation of the automatic sprinkler system shall actuate the building fire alarm system.

The organizations that develop and enforce these standards are located at the following addresses:

Building Officials and Code Administrators (BOCA)
4051 West Flossmoor Road
Country Club Hills, IL 60478

International Conference of Building Officials (ICBO)
5360 Workman Mill Road
Whittier, CA 90601

Southern Building Code Congress International (SBCCI)
900 Montclair Road
Birmingham, AL 35213

International Code Council Inc.
Three different standards organizations, BOCA, ICBO, and SBCCI formed the umbrella organization ICC. The purpose of ICC is to produce a single set of model building and fire codes. ICC is located at 5360 Workman Mill Road in Whittier, California 90601-2298.

Testing Laboratories
Testing laboratories were created to test a wide variety of products and systems to ensure product safety. Today, almost every product sold in the United States must be approved or listed by these testing laboratories. All sprinkler system monitoring products and fire sprinkler system components are tested and approved by these laboratories and feature the testing laboratories’ label.

Two common testing laboratories that provide approval of Fire Sprinkler Monitoring products are as follows:

Underwriters Laboratories Inc. (UL)
Laboratory and Testing Facilities

Corporate
333 Pfingsten Road
Northbrook, IL 60062

Also located at:
1285 Walt Whitman Road
Melville, NY 11747

1655 Scott Blvd.
Santa Clara, CA 95050

North Carolina Division
12 Laboratory Drive
P.O. Box 13995
Research Triangle Park, NC 27709

Factory Mutual Research (FM)

1151 Boston-Providence Turnpike
P.O. Box 9102
Norwood, MA 02062
The monitoring of water flow, valve position, or system status is typically needed in fire sprinkler systems in order to alert the fire department and/or facility manager of a fire or trouble condition that needs immediate attention. Vane or paddle type water flow detectors and pressure type switches are used to detect the flow of water in a sprinkler system and to send an alarm signal. Valve supervisory switches are used to monitor the open or closed position of the valves that control the water supply in the fire sprinkler system. Supervisory pressure switches monitor the status of the system air pressure in dry and pre-action systems. In certain situations, they also are used to monitor water pressure in wet pipe sprinkler systems.

Vane Type Water Flow Detectors

Principles of Operation

Vane type water flow detectors, which monitor the flow of water in a wet pipe sprinkler system, send an alarm when a continuous flow of water occurs from an activated sprinkler head or from a leak in the system. Water flow detectors can be mounted to vertical up flow or horizontal run distribution pipes in wet pipe sprinkler systems. Water flow detectors are available for two through eight inch pipe sizes, and can be installed on Schedule 10 or 40 fire sprinkler pipe. T-tap type water flow detectors are also available and are usually installed to one inch NPT outlets of threaded steel, copper and CPVC tees on T-style connectors. T-tap water flow detectors accommodate a wide range of tee and pipe sizes from one inch to two inch tee sizes; different tees require the installation of different paddle sizes.

The detectors include a plastic vane or paddle, which installs through an opening in the wall of the distribution pipe. When the flow of water is greater than 10 gallons per minute, the vane or paddle deflects, which produces a switched output, usually after a preset time delay. To minimize false alarms due to pressure surges or air trapped in the sprinkler system, a mechanical delay is often used to postpone switch activation. This delay is frequently referred to as a retard as it takes the place of the previously mentioned retard chamber in wet pipe systems. If water flow decreases to four gallons per minute or below, the timing mechanism will reset to zero; delays do not accumulate. Time delays are adjustable from 0 to 90 seconds.

Typically, water flow detectors are equipped with dual SPDT (Form C) switches for activation of an alarm panel and alarm bell, or an A/V device. When a water flow detector is connected to a listed sprinkler/fire alarm control panel, the initiating circuit must be non-silenceable. Water flow detec-
tors are designed to be installed in a variety of environments and are approved for both indoor and outdoor applications. U-bolt type water flow detectors are designed primarily for use in commercial applications; whereas, T-tap style water flow detectors are designed for primary signaling in residential applications and branch line signaling in larger systems. The only differences between U-bolt and T-tap style water flow detectors are the methods in which they attach to the pipe. T-tap style water flow detectors also are available without a time delay mechanism.

Product Placement

For optimal performance water flow detectors should be mounted in an area where there is adequate clearance for installation, removal and inspection. To prevent damage, water flow detectors should be installed between six and seven feet above the floor. When installing a water flow detector on horizontal pipe, the detector should always be placed on top of the pipe to avoid build up of rust or other particles from collecting and interfering with the actuation of the device. When installing a water flow detector on vertical pipes, make sure the detector is installed in an area where there is an upward flow.

For the accurate detection of water flow, detectors should be installed at least six inches from fittings that change the direction of flow in the pipe, and at least 24 inches from a drain or valve. It is important that the detector is installed in the proper flow direction, which is indicated by an arrow on the product.

Testing, Maintenance and Service

System Sensor water flow detectors offer replaceable terminal blocks and timer delay (retard) mechanisms, so the detector can be serviced or maintained without draining the fire sprinkler system and removing the detector. Before repairing, maintaining, or testing water flow devices, it is important to notify the central station monitoring the water flow alarms. To prevent accidental water damage during maintenance, control valves should be closed and the system completely drained before the water flow detectors are removed or replaced. Any detector that shows evidence of water leakage should be replaced. If a detector needs to be removed, the pipe must be drained, then the electrical power must be turned off to the detector before disconnecting wires. Once the wires are removed, the nuts can be loosened and the U-bolt removed. Lift the detector to allow enough room for the paddle to be manually rolled inward and clear the opening in the pipe.

Water flow detectors should be tested at least quarterly to ensure proper operation; however, the AHJ may require detectors to be tested more frequently. When testing the sprinkler system, open the inspector’s test valve and time how long it takes for the detector to indicate a flow condition. The water flow detector should stay in alarm until the inspector’s test valve is closed. Timing can be adjusted if the desired time is not achieved.

Supervisory Switches

Principles of Operation/Product Placement

Supervisory switches are used primarily to monitor the open position of valves in a fire sprinkler system. One of the major causes of sprinkler system failure occurs when control valves are accidentally left closed, rendering the fire sprinkler system inoperable. Supervisory switches are required to send a signal if a valve is closed one-fifth of its total travel distance.

There are three main types of valves used in fire sprinkler systems: outside screw and yoke (OS&Y), butterfly (BFV), and post indicator valves (PIV).

Any valve that can affect the flow of water in a fire sprinkler system must be monitored. Three different types of supervisory switches are available for monitoring the open position of these different valve types. These switches – OS&Y, PIBV and special purpose – are typically equipped with dual SPDT (Form C) synchronized switches for activation of a supervisory signal at a panel or auxiliary device.

OS&Y type supervisory switches are designed to monitor the open position of OS&Y gate valves. A large hand wheel with a threaded shaft controls the position of the valve. The shaft moves when the valve’s position changes. The switch is equipped with an actuator rod, which sits in a groove filed into the shaft or provided by the valve manufacturer. As the valve is closed by the turning of the hand wheel, the actuator rod slides out of the groove in the shaft, causing the switches to operate and send a supervisory/trouble signal. A signal also sounds if the tamper switch is removed from the valve.
OS&Y type supervisory switches can be mounted on the yoke of OS&Y valves, which range in size from ½ inch to 12 inches in diameter. The adjustable shaft and mounting brackets allow installation to various sizes of valves. OS&Y supervisory switches are suitable for indoor or outdoor use and can be mounted vertically or horizontally. Two switches simultaneously activate both a local bell and an alarm panel. These supervisory switches are mounted on the yoke of the valve using either “J” hooks or carriage bolts with clamping bars. “J” hooks are typically used for mounting the switch on smaller valves. When mounting the OS&Y switch to the valve, be sure the actuator rod is resting in either the factory-provided or filed groove.

PIBV type supervisory switches monitor the open position of butterfly, pressure reducing, wall post indicator, and yard post indicator valves.

When installing a PIBV supervisory switch on a post indicator type valve, the switch is placed in a one half inch NPT tapped hole located so that the actuating lever of the switch engages the target or flag of the valve. The target or flag is the part of the valve that moves when the state of the valve changes. At times, the target or flag is attached to the display that shows “open” or “shut” through a window on the post to indicate the position of the valve.

There are two types of post indicator valves: rising flag and falling flag. In rising flag applications, the PIBV supervisory switch mounts below the target assembly. When the valve is closed, the target assembly raises and releases the actuating lever on the PIBV switch. In falling flag applications, the opposite holds true. When that valve is in the open position, its target should be pushing the trip rod against the spring force of the actuator. When closing a PIBV type valve, the supervisory switch must trip within one-fifth of the full travel distance of the valve.

When a PIBV supervisory switch is installed on a butterfly valve, it is placed in a one half inch NPT hole on the valve. The actuator rod is operated by a cam inside of the valve that rotates as the valve is opened and closed.

A special purpose supervisory switch is available, also, and is suitable for applications where no other type of listed supervisory switch will work. The special purpose switch is the plug-in type that is used on non-rising stem gate, and
ball and angle valves. This type of switch has an adjustable-length cord, which allows more freedom during installation, and offers a 360 degree mounting design. The cord can be woven through the handle valve so that the cord plug must be disengaged in order to close the valve, sending a signal to the panel. This type of supervisory switch is wired to the trouble circuit of the fire alarm control panel, and is approved for both indoor and outdoor applications. A lockout feature prevents the plug from being reinserted unless the cover of the switch is removed with a tamper-proof wrench.

Maintenance and Service

All supervisory switches should be tested after the completion of installation and before they are placed into service. Thereafter, the switches should be tested at least semi-annually, or as required by the local AHJ.

![Figure 6: A special purpose supervisory switch](image)

Pressure Switches

Principles of Operation/Product Placement

There are two main types of pressure switches, alarm pressure switches and supervisory pressure switches. Alarm pressure switches are suitable for use in wet, dry, deluge and pre-action automatic fire sprinkler systems to indicate a discharge of water from one or more sprinkler heads. They are, however, most commonly installed in dry pipe sprinkler systems. Alarm pressure switches are the only way to detect the flow of water in dry pipe, pre-action and deluge sprinkler systems. Unlike the paddle type switches, these pressure switches are not damaged from the sudden inrush of water. Since the switch does not extend into the open pipe, there is no risk of damage to the switch.

In a dry pipe sprinkler system, the alarm pressure switch is installed on the alarm line trim of the dry pipe, deluge, and pre-action valves. No delay is required since pressure surges from the water supply are not an issue in these types of systems.

In a wet pipe sprinkler system, an alarm pressure switch is typically installed on top of the retard chamber into a one half inch tapped outlet. A time delay is not needed when using a pressure switch because the retard chamber will divert water flowing through the alarm line during pressure surges from the city water supply. A drip valve allows water to drain from the chamber.

Alarm pressure switches are pre-set to alarm at 4 to 8 PSI on rising pressure. The pressure setting can be field adjusted to obtain a specific pressure alarm response between 4 and 20 PSI.

Supervisory pressure switches monitor the status of system conditions, primarily the status of air pressure in dry pipe and pre-action systems. In certain conditions, they also monitor water pressure in wet pipe sprinkler systems.

Air pressure in a dry pipe system is supplied by an air compressor or other source, and is usually kept 15 to 20 PSI above the trip point of the dry pipe valve. A low air supervisory pressure switch should be installed to monitor the air pressure on the system side of the dry pipe valve. The low air supervisory pressure switch monitors the low air pressure within the system, and should be set to signal an alarm when the system air pressure drops 10 PSI below normal. The supervisory alarm will help prevent the accidental operation of the dry pipe valve due to low air pressure from air compressor failure or air leaks in the system.

A second type of supervisory pressure switch monitors the system for both the low and the high air pressure levels. Too much air pressure can damage the clapper and rubber gaskets in the dry pipe valve, delaying the operation of the valve due to the time it would take to bleed off the high air pressure within the system.

The low air and high/low air supervisory pressure switches are installed in the small trim piping that is connected to the automatic air compressor or other source.

![Figure 7: Parts of a pressure switch](image)
Low pressure alarm switches should be installed with a ball valve in the line. A ball valve, which has a small orifice in it, is utilized to exhaust the pressure between the ball valve and the pressure switch. The ball valve allows testing of the pressure switch without any possibility of accidental operation of the dry pipe valve. In addition, it speeds up the testing process since a small amount of air is being released.

Maintenance and Service

After installation is complete, the pressure switch trip points should be tested by slowly introducing pressure from the test source. Test points should be tested several times to ensure accuracy of the setting. Preventative maintenance and periodic testing should be performed as required by the applicable NFPA standards. It is recommended that testing be done at least bi-monthly, or as often as required by the AHJ.

Explosion Proof Detectors

Principles of Operation

The majority of fire sprinkler monitoring devices are available in explosion proof designs. Typically, devices include U-bolt style water flow detectors; alarm and supervisory pressure switches; and OS&Y and PIBV supervisory switches.

Explosion proof products are typically installed in special applications that house high hazard operations. Examples include pulp and paper mills, distilleries, aircraft hangars, munitions plants, petrochemical factories, petroleum tank farms, and other areas that store flammable liquids and materials.

All explosion proof sprinkler monitoring devices are enclosed in rugged housings to prevent any internal spark (that could be caused by the activation of the switches enclosed in the housings) from becoming a secondary ignition point.

Product Placement/Maintenance and Service

Products are placed in the same manner and location as those installed in non-explosive environments. Testing and maintenance would be performed in the same manner. Testing may be required more frequently to ensure the system is operating properly, since a fire in an explosive environment could have devastating effects.

Alarm Bells and Horn/Strobes

Principles of Operation

Alarm bells are low current, high decibel notification devices, which emit loud resonant tones during fire, burglary, or other alarm situations. The most common sizes of alarm bells are 6 inch, 8 inch, and 10 inch. Alarm bells that operate on 24 VDC are motor driven, and those that operate on 120 V AC have a vibrating mechanism. Alarm bells are suitable for both indoors and outdoors. Indoor alarm bells mount directly to a four inch square electrical box. Outdoor alarm bells must be used with a weatherproof back box. Typically, alarm bells are pre-wired, reducing installation time. The 24 VDC models incorporate a polarized electrical design for use with supervision circuitry.

Alarm bells are usually suitable for surface or semi-flush mounting, and incorporate under dome strikers and operating mechanisms.

Alarm bells are intended to be connected to alarm indication circuits of fire alarm control panels.

An outdoor horn/strobe can be installed in place of an alarm bell with the added benefit of providing both a visible and an audible notification.

Testing and Maintenance

After installation, all bells should be tested in accordance with NFPA 72. Periodic testing should also be performed at least annually, or as often as required by the AHJ.
Appendix 1

Glossary of Terms

alarm check valve (non-approved back flow preventer) a single, soft-seated check valve (it may or may not be internally loaded) that will sound an alarm when the check valve opens. The alarm check shall have suitable connections for testing the water tightness and operation of the check valve.

dry pipe automatic sprinkler system an automatic sprinkler system where all piping contains pressurized air. When a sprinkler head opens, the air is released causing the valve that is being held shut by the compressed air to open, allowing the water to flow into the system and to any open sprinkler heads. This type of system is used in areas where the sprinkler heads and the immediately adjacent piping can be exposed to freezing conditions.

dry valve an automatic sprinkler valve under air pressure, designed to allow air to escape prior to the release of water. The air prevents freezing and bursting of pipes.

pre-action automatic sprinkler system an automatic sprinkler system that is similar to a dry pipe system, but air pressure may or may not be used. The main sprinkler system control valve is opened by an actuating device, which permits water to flow to the individual sprinkler heads, and the system then functions as a wet pipe system. It is generally used in areas where piping systems are subject to mechanical damage, and where it is important to prevent accidental discharge of water.

riser vertical supply pipes, valves and accessories in a sprinkler system.

wet pipe automatic sprinkler system an automatic sprinkler system where all piping is filled with water under pressure and released by a fusible mechanism in the sprinkler head.

alarm valve a valve in automatic sprinkler systems, which automatically sends an alarm (sometimes a water motor gong or signal) directly to a notification device, alarm panel, and or the fire department. An alarm valve operates as a sprinkler head(s) fuses, allowing water to flow through the system.

deluge automatic sprinkler system an automatic sprinkler system where all the sprinkler heads are open and the water is held back at a main (deluge) valve. When the valve is triggered, water is discharged from all the sprinkler heads simultaneously. The triggering device is usually a heat or smoke detector. This type of system is used where it is necessary to wet down a large area quickly, such as an airplane hangar or explosives factory.

automatic sprinkler system an integrated system of underground and overhead piping connected to sprinkler heads, usually mounted in the ceiling, that is activated at a relatively low temperature during the initial stage of a fire. The sprinkler heads release a spray of water to extinguish the fire or prevent it from spreading. Insurance underwriters typically require automatic sprinkler systems in certain types of buildings or occupancies. Usually, sprinkler water supply systems must be independent of normal water service to the protected building. Periodic inspection and testing of sprinklers is required. The existence of an approved sprinkler system normally reduces premiums for the insured property.

dry pipe automatic sprinkler system an automatic sprinkler system where all piping contains pressurized air. When a sprinkler head opens, the air is released causing the valve that is being held shut by the compressed air to open, allowing the water to flow into the system and to any open sprinkler heads. This type of system is used in areas where the sprinkler heads and the immediately adjacent piping can be exposed to freezing conditions.

dry valve an automatic sprinkler valve under air pressure, designed to allow air to escape prior to the release of water. The air prevents freezing and bursting of pipes.

pre-action automatic sprinkler system an automatic sprinkler system that is similar to a dry pipe system, but air pressure may or may not be used. The main sprinkler system control valve is opened by an actuating device, which permits water to flow to the individual sprinkler heads, and the system then functions as a wet pipe system. It is generally used in areas where piping systems are subject to mechanical damage, and where it is important to prevent accidental discharge of water.

riser vertical supply pipes, valves and accessories in a sprinkler system.

wet pipe automatic sprinkler system an automatic sprinkler system where all piping is filled with water under pressure and released by a fusible mechanism in the sprinkler head.